5,074 research outputs found

    The Carbon content in the Galactic CygnusX/DR21 star forming region

    Full text link
    Observations of Carbon bearing species are among the most important diagnostic probes of ongoing star formation. CO is a surrogate for H2_2 and is found in the vicinity of star formation sites. There, [CI] emission is thought to outline the dense molecular cores and extend into the lower density regions, where the impinging interstellar UV radiation field plays a critical role for the dissociation and ionization processes. Emission of ionized carbon ([CII]) is found to be even more extended than [CI] and is linking up with the ionized medium. These different tracers emphasize the importance of multi-wavelength studies to draw a coherent picture of the processes driving and driven by high mass star formation. Until now, large scale surveys were only done with low resolution, such as the COBE full sky survey, or were biased to a few selected bright sources (e.g. Yamamoto et al. 2001, Schneider et al. 2003). A broader basis of unbiased, high-resolution observations of [CI], CO, and [CII] may play a key role to probe the material processed by UV radiation.Comment: 4 pages, 4 figure, to appear in "Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium", ed. S. Pfalzner, C. Kramer, C. Straubmeier, and A. Heithausen (Springer Verlag

    Report by the ESA-ESO Working Group on Fundamental Cosmology

    Get PDF
    ESO and ESA agreed to establish a number of Working Groups to explore possible synergies between these two major European astronomical institutions. This Working Group's mandate was to concentrate on fundamental questions in cosmology, and the scope for tackling these in Europe over the next ~15 years. One major resulting recommendation concerns the provision of new generations of imaging survey, where the image quality and near-IR sensitivity that can be attained only in space are naturally matched by ground-based imaging and spectroscopy to yield massive datasets with well-understood photometric redshifts (photo-z's). Such information is essential for a range of new cosmological tests using gravitational lensing, large-scale structure, clusters of galaxies, and supernovae. Great scope in future cosmology also exists for ELT studies of the intergalactic medium and space-based studies of the CMB and gravitational waves; here the synergy is less direct, but these areas will remain of the highest mutual interest to the agencies. All these recommended facilities will produce vast datasets of general applicability, which will have a tremendous impact on broad areas of astronomy.Comment: ESA-ESO Working Groups Report No. 3, 125 pages, 28 figures. A PDF version including the cover is available from http://www.stecf.org/coordination/esa_eso/cosmology/report_cover.pdf and a printed version (A5 booklet) is available in limited numbers from the Space Telescope-European Coordinating Facility (ST-ECF): [email protected]

    Cosmic shear analysis of archival HST/ACS data: I. Comparison of early ACS pure parallel data to the HST/GEMS Survey

    Get PDF
    This is the first paper of a series describing our measurement of weak lensing by large-scale structure using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). We describe our new correction scheme for the time-dependent ACS PSF based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to < 2*10^{-6} for galaxy fields containing at least 10 stars. We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin^{-2} with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation sigma_{8,CDFS}=0.52^{+0.11}_{-0.15} (stat) +/- 0.07 (sys) (68% confidence assuming Gaussian cosmic variance) at fixed Omega_m=0.3 for a LambdaCDM cosmology. We interpret this exceptionally low estimate to be due to a local under-density of the foreground structures in the CDFS.Comment: Version accepted for publication in Astronomy & Astrophysics with 28 pages, 25 figures. A version with full resolution figures can be downloaded from http://www.astro.uni-bonn.de/~schrabba/papers/cosmic_shear_acs1_v2.pd

    Evidence of magnetic field decay in massive main-sequence stars

    Get PDF
    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V band and range in mass between 5 and 100 Msun. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flux conservation. We also find that binary rejuvenation and magnetic suppression of core convection are unlikely to be responsible for the observed lack of older magnetic massive stars, and conclude that its most probable cause is the decay of the magnetic field, over a time span longer than the stellar lifetime for the lowest considered masses, and shorter for the highest masses. We then investigate the spin-down ages of the slowly rotating magnetic massive stars and find them to exceed the stellar ages by far in many cases. The high fraction of very slowly rotating magnetic stars thus provides an independent argument for a decay of the magnetic fields.Comment: Accepted for publication on A&A; 9 pages, 8 figure

    GaBoDS: The Garching-Bonn Deep Survey - III. Lyman-Break Galaxies in the Chandra Deep Field South

    Full text link
    We present first results of our search for high-redshift galaxies in deep CCD mosaic images. As a pilot study for a larger survey, very deep images of the Chandra Deep Field South (CDFS), taken withWFI@MPG/ESO2.2m, are used to select large samples of 1070 U-band and 565 B-band dropouts with the Lyman-break method. The data of these Lyman-break galaxies are made public as an electronic table. These objects are good candidates for galaxies at z~3 and z~4 which is supported by their photometric redshifts. The distributions of apparent magnitudes and the clustering properties of the two populations are analysed, and they show good agreement to earlier studies. We see no evolution in the comoving clustering scale length from z~3 to z~4. The techniques presented here will be applied to a much larger sample of U-dropouts from the whole survey in near future.Comment: 11 pages, 11 figures, replaced with version accepted by A&A. Minor changes and tabular appendix with LBG catalogues. Version with full resolution figures available at http://www.astro.uni-bonn.de/~hendrik/2544.pd

    Large scale IRAM 30m CO-observations in the giant molecular cloud complex W43

    Get PDF
    We aim to give a full description of the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It has previously been identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated an IRAM 30m large program, named W43-HERO, covering a large dynamic range of scales (from 0.3 to 140 pc). We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km/s and a spatial resolution of 12". These maps cover an area of ~1.5 square degrees and include the two main clouds of W43, as well as the lower density gas surrounding them. A comparison with Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at a distance from the Sun of approximately 6 kpc. The resulting intensity cubes of the observed region are separated into sub-cubes, centered on single clouds which are then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared with those derived from Herschel dust maps. The mass of a typical cloud is several 10^4 solar masses while the total mass in the dense molecular gas (>100 cm^-3) in W43 is found to be about 1.9e6 solar masses. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data PDF may imply that those selectively show the gravitationally collapsing gas

    Reducing distance errors for standard candles and standard sirens with weak-lensing shear and flexion maps

    Full text link
    Gravitational lensing induces significant errors in the measured distances to high-redshift standard candles and standard sirens such as type-Ia supernovae, gamma-ray bursts, and merging supermassive black hole binaries. There will therefore be a significant benefit from correcting for the lensing error by using independent and accurate estimates of the lensing magnification. We investigate how accurately the magnification can be inferred from convergence maps reconstructed from galaxy shear and flexion data. We employ ray-tracing through the Millennium Simulation to simulate lensing observations in large fields, and perform a weak-lensing reconstruction on these fields. We identify optimal ways to filter the reconstructed convergence maps and to convert them to magnification maps. We find that a shear survey with 100 galaxies/arcmin^2 can help to reduce the lensing-induced distance errors for standard candles/sirens at redshifts z=1.5 (z=5) on average by 20% (10%), whereas a futuristic survey with shear and flexion estimates from 500 galaxies/arcmin^2 yields much larger reductions of 50% (35%). For redshifts z>=3, a further improvement by 5% can be achieved, if the individual redshifts of the galaxies are used in the reconstruction. Moreover, the reconstruction allows one to identify regions for which the convergence is low, and in which an error reduction by up to 75% can be achieved.Comment: 16 pages, 18 figures, submitted to MNRAS, minor changes, references extended, comments welcom

    SOFIA Observations of S106: Dynamics of the Warm Gas

    Get PDF
    Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region

    Experimental characterization of frequency dependent squeezed light

    Full text link
    We report on the demonstration of broadband squeezed laser beams that show a frequency dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064nm. This frequency dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The later were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with one degree precision. Frequency dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third generation gravitational wave interferometers. We consider the application of our system to long baseline interferometers such as a future squeezed light upgraded GEO600 detector.Comment: 8 pages, 8 figure

    Using dynamic pupillometry as a simple screening tool to detect autonomic neuropathy in patients with diabetes: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autonomic neuropathy is a common and serious complication of diabetes. Early detection is essential to enable appropriate interventional therapy and management. Dynamic pupillometry has been proposed as a simpler and more sensitive tool to detect subclinical autonomic dysfunction. The aim of this study was to investigate pupil responsiveness in diabetic subjects with and without cardiovascular autonomic neuropathy (CAN) using dynamic pupillometry in two sets of experiments.</p> <p>Methods</p> <p>During the first experiment, one flash was administered and the pupil response was recorded for 3 s. In the second experiment, 25 flashes at 1-s interval were administered and the pupil response was recorded for 30 s. Several time and pupil-iris radius-related parameters were computed from the acquired data. A total of 24 diabetic subjects (16 without and 8 with CAN) and 16 healthy volunteers took part in the study.</p> <p>Results</p> <p>Our results show that diabetic subjects with and without CAN have sympathetic and parasympathetic dysfunction, evidenced by diminished amplitude reflexes and significant smaller pupil radius. It suggests that pupillary autonomic dysfunction occurs before a more generalized involvement of the autonomic nervous system, and this could be used to detect early autonomic dysfunction.</p> <p>Conclusions</p> <p>Dynamic pupillometry provides a simple, inexpensive, and noninvasive tool to screen high-risk diabetic patients for diabetic autonomic neuropathy.</p
    corecore